skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hwang, Taehee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Forest composition is changing, yet the consequences for terrestrial carbon cycling are unclear. In the eastern United States, water‐demanding “mesophytic” tree species are replacing “xerophytic” oaks (Quercusspp.) and hickories (Caryaspp.), raising concerns that forest productivity will become increasingly sensitive to more frequent and severe drought conditions predicted for the region. However, we have a limited understanding of the extent to which the mortality risk of xerophytes versus mesophytes is coordinated with their growth sensitivity during drought. Here, we evaluated growth and mortality dynamics for 20 abundant eastern United States tree species following a severe drought in the summer of 2012. We synthesized data from ~4500 forest inventory plots and used an approach that quantified relative drought responses between co‐located trees to minimize impacts from environmental heterogeneity. We found that mesophytes were just as likely to perish as co‐occurring xerophytes but were more sensitive to drought in terms of diminished growth. These findings suggest that xerophytic decline is likely to lead to reduced carbon uptake during drought and that management efforts to conserve oak‐hickory stands will be decisive to sustain the carbon mitigation potential of these forests. However, we also found that growth‐mortality relationships differed between functional groups. Among xerophytes, growth and survival during drought were decoupled. Among mesophytes, there was a high degree of coordination, where species that experienced greater mortality also experienced greater growth reductions. Therefore, mesophytes with high growth sensitivity to water deficits are likely to be the most vulnerable to drought‐driven die‐off events moving forward. 
    more » « less
  2. Abstract Future flood risk assessment has primarily focused on heavy rainfall as the main driver, with the assumption that projected increases in extreme rain events will lead to subsequent flooding. However, the presence of and changes in vegetation have long been known to influence the relationship between rainfall and runoff. Here, we extract historical (1850–1880) and projected (2070–2100) daily extreme rainfall events, the corresponding runoff, and antecedent conditions simulated in a prominent large Earth system model ensemble to examine the shifting extreme rainfall and runoff relationship. Even with widespread projected increases in the magnitude (78% of the land surface) and number (72%) of extreme rainfall events, we find projected declines in event‐based runoff ratio (runoff/rainfall) for a majority (57%) of the Earth surface. Runoff ratio declines are linked with decreases in antecedent soil water driven by greater transpiration and canopy evaporation (both linked to vegetation greening) compared to areas with runoff ratio increases. Using a machine learning regression tree approach, we find that changes in canopy evaporation is the most important variable related to changes in antecedent soil water content in areas of decreased runoff ratios (with minimal changes in antecedent rainfall) while antecedent ground evaporation is the most important variable in areas of increased runoff ratios. Our results suggest that simulated interactions between vegetation greening, increasing evaporative demand, and antecedent soil drying are projected to diminish runoff associated with extreme rainfall events, with important implications for society. 
    more » « less
  3. null (Ed.)
    The southern Appalachian forests have been threatened by several large-scale disturbances, such as wildfire and infestation, which alter the forest ecosystem structures and functions. Hemlock Woolly Adelgid (Adelges tsugae Annand, HWA) is a non-native pest that causes widespread foliar damage and eventual mortality, resulting in irreversible tree decline in eastern (Tsuga canadensis) and Carolina (T. caroliniana) hemlocks throughout the eastern United States. It is important to monitor the extent and severity of these disturbances over space and time to better understand their implications in the biogeochemical cycles of forest landscapes. Using all available Landsat images, we investigate and compare the performance of Tasseled Cap Transformation (TCT)-based indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Disturbance Index (DI) in capturing the spectral-temporal trajectory of both abrupt and gradual forest disturbances (e.g., fire and hemlock decline). For each Landsat pixel, the temporal trajectories of these indices were fitted into a time series model, separating the inter-annual disturbance patterns (low frequency) and seasonal phenology (high frequency) signals. We estimated the temporal dynamics of disturbances based on the residuals between the observed and predicted values of the model, investigated the performance of all the indices in capturing the hemlock decline intensity, and further validated the results with the number of individual dead hemlocks identified from high-resolution aerial images. Our results suggested that the overall performance of NDVI, followed by TCT wetness, was most accurate in detecting both the disturbance timing and hemlock decline intensity, explaining over 90% of the variability in the number of dead hemlocks. Despite the overall good performance of TCT wetness in characterizing the disturbance regime, our analysis showed that this index has some limitations in characterizing disturbances due to its recovery patterns following infestation. 
    more » « less
  4. Abstract The oak (Quercus) species of eastern North America are declining in abundance, threatening the many socioecological benefits they provide. We discuss the mechanisms responsible for their loss, many of which are rooted in the prevailing view that oaks are drought tolerant. We then synthesize previously published data to comprehensively review the drought response strategies of eastern US oaks, concluding that whether or not eastern oaks are drought tolerant depends firmly on the metric of success. Although the anisohydric strategy of oaks sometimes confers a gas exchange and growth advantage, it exposes oaks to damaging hydraulic failure, such that oaks are just as or more likely to perish during drought than neighboring species. Consequently, drought frequency is not a strong predictor of historic patterns of oak abundance, although long-term climate and fire frequency are strongly correlated with declines in oak dominance. The oaks’ ability to survive drought may become increasingly difficult in a drier future. 
    more » « less
  5. null (Ed.)
  6. Abstract Plants track changing climate partly by shifting their phenology, the timing of recurring biological events. It is unknown whether these observed phenological shifts are sufficient to keep pace with rapid climate changes. Phenological mismatch, or the desynchronization between the timing of critical phenological events, has long been hypothesized but rarely quantified on a large scale. It is even less clear how human activities have contributed to this emergent phenological mismatch. In this study, we used remote sensing observations to systematically evaluate how plant phenological shifts have kept pace with warming trends at the continental scale. In particular, we developed a metric of spatial mismatch that connects empirical spatiotemporal data to ecological theory using the “velocity of change” approach. In northern mid‐to high‐latitude regions (between 30–70°N) over the last three decades (1981–2014), we found evidence of a widespread mismatch between land surface phenology and climate where isolines of phenology lag behind or move in the opposite direction to the isolines of climate. These mismatches were more pronounced in human‐dominated landscapes, suggesting a relationship between human activities and the desynchronization of phenology dynamics with climate variations. Results were corroborated with independent ground observations that indicate the mismatch of spring phenology increases with human population density for several plant species. This study reveals the possibility that not even some of the foremost responses in vegetation activity match the pace of recent warming. This systematic analysis of climate‐phenology mismatch has important implications for the sustainable management of vegetation in human‐dominated landscapes under climate change. 
    more » « less
  7. Abstract Forest canopy water use and carbon cycling traits (WCT) can vary substantially and in spatially organized patterns, with significant impacts on watershed ecohydrology. In many watersheds, WCT may vary systematically along and between hydrologic flowpaths as an adaptation to available soil water, nutrients, and microclimate‐mediated atmospheric water demand. We hypothesize that the emerging patterns of WCT at the hillslope to catchment scale provide a more resistant ecohydrological system, particularly with respect to drought stress, and the maintenance of high levels of productivity. Rather than attempting to address this hypothesis with species‐specific patterns, we outline broader functional WCT groups and explore the sensitivity of water and carbon balances to the representation of canopy WCT functional organization through a modelling approach. We use a well‐studied experimental watershed in North Carolina where detailed mapping of forest community patterns are sufficient to describe WCT functional organization. Ecohydrological models typically use broad‐scale characterizations of forest canopy composition based on remotely sensed information (e.g., evergreen vs. deciduous), which may not adequately represent the range or spatial pattern of functional group WCT at hillslope to watershed scales. We use three different representations of WCT functional organizations: (1) restricting WCT to deciduous/conifer differentiation, (2) utilizing more detailed, but aspatial, information on local forest community composition, and (3) spatially distributed representation of local forest WCT. Accounting for WCT functional organization information improves model performance not only in terms of capturing observed flow regimes (especially watershed‐scale seasonal flow dynamics) but also in terms of representing more detailed canopy ecohydrologic behaviour (e.g., root zone soil moisture, evapotranspiration, and net canopy photosynthesis), especially under dry condition. Results suggest that the well‐known zonation of forest communities over hydrologic gradients is not just a local adaptation but also provides a property that regulates hillslope to catchment‐scale behaviour of water use and drought resistance. 
    more » « less